TO: Wendy Southworth, PE

Project Management Coordinator

Division of Highway Design

FROM: Bart Asher, PE, PLS

Geotechnical Branch Manager Division of Structural Design

BY: J.C. Wilhoite, PE

Geotechnical Branch

DATE: May 4, 2017

SUBJECT: Warren County

KY 884

Station 247+50 to 346+54.77

Item # 03-8852.00 Mars # 8963101D

Project # FD04 114 0884 005-008

Geotechnical Engineering Roadway Report

Location and Description

An abbreviated geotechnical engineering report has been completed for the subject project. Drilling and sampling were performed by Stantec, Inc. The laboratory testing was performed by the Geotechnical Branch. The purpose of this report is to identify potential geotechnical concerns based on the subsurface information obtained, a review of the project plans, the drilling, and prior experience with the project area. This project involves widening and upgrades to KY 884 from Long Road to just south of the Natcher Parkway. This project is adjacent to the project covered under R-028-2016 that continues over the Natcher Parkway. Reduced size geotechnical symbols, notes, and profile sheets are attached. The CADD input, in DGN format, is being e-mailed to the district for incorporation into the roadway plans.

Topography

The project is located in south Kentucky within the Pennyroyal physiographic region. This region consists of karst topography which features cave systems, sinkholes, and underground streams. Two small sinkholes were noted within the project area on Kentucky Geological Survey karst potential maps. These karst features should not affect the construction of the project. However, other, unmapped features may be encountered during construction.

The maximum topographic relief along the proposed centerline is approximately 15.5 feet. The

proposed project will consist of relatively shallow cuts and minor embankment heights due to the low relief of the topography.

Geology

The project is located within the Bowling Green Geologic Quadrangle (#235). The geologic mapping indicates the upper geologic formation at this site is the Ste. Genevieve Limestone Formation. This formation consists of limestone that is susceptible to karst activity as evidenced in the above mentioned topography.

The roadway excavation will produce an insufficient quantity of durable rock for the recommendations below. Rock was not encountered in any profile borings; therefore, rock quantity calculations were not required.

Drilling and Sampling

Drilling operations for this project were performed in January of 2017. Local weather records indicate precipitation events occurred the week prior to and of drilling operations. Therefore, moisture contents of samples shown on the attached profile drawings may be higher than what is encountered during construction depending on the season.

The drilling operations consisted of 33 disturbed profile borings. Sampling depths ranged from 5 to 12 feet with none of the borings encountering refusal on bedrock. Undisturbed sample borings, rock cores, and soundings were not required for this project due to only minor cut and embankment slopes being proposed in the plans.

Laboratory Testing

The soil testing showed the soil types for the project to be equally distributed between low to medium plasticity clays (CL in the Unified Soil Classification System) at 50% and high plasticity clays (CH) at 50% of the soil samples. The soils appear to be residual and are typical given the parent rock formation.

CBR tests were performed on samples obtained from soils from the proposed cuts and/or near the proposed subgrade. Eight CBR tests were performed. The results of the testing ranged from 4.9 to 6.6.

Engineering Analysis

Stability analyses were not required for this project based on the slope heights and configurations. Cut and embankment slopes should be 2H:1V or flatter, and should be constructed according to the current edition of the Standard Specifications for Road and Bridge Construction.

Soil Stabilization

Subgrade problems may occur in areas where the existing pavement will be removed or where the roadway template is in a shallow fill or in a cut condition. Therefore, a two-foot working platform consisting of Kentucky Coarse Aggregate No. 2, 3, or 23 wrapped with Geotextile Fabric may be required for these areas. The thickness of the working platform may need to be greater than two feet in areas as determined by the Engineer on construction and may depend on seasonal fluctuations in the water table. The working platform shall daylight horizontally to the edge of embankment in fills and to the ditchline in cuts, to ensure positive drainage. For quantity estimation purposes only, a 2-foot working platform for 1,000 linear feet of roadway may be assumed.

As mentioned above, some of the soils are silts and clay soils which are moisture sensitive. The embankment foundation construction may require a working platform where soft and/or saturated soils are encountered. The extent of these problems will depend on time of construction and seasonal water table fluctuations. The recommendations below provide for the use of Kentucky Coarse Aggregate # 2's, 3's or 23's wrapped with Geotextile Fabric for stabilization of any such wet areas encountered during construction. For quantity estimation purposes only, a 2-foot embankment working platform for 1,000 linear feet of roadway may be assumed.

GEOTECHNICAL RECOMMENDATIONS:

- 1.) In accordance with Section 206 of the current Standard Specifications, the moisture content of embankment material shall not vary from the optimum moisture content as determined by the current version of KM 64-511 by more than +2 percent or less than -2 percent. This moisture content requirement shall have equal weight with the density requirement when determining the acceptability of embankment construction. Refer to the Family of Curves for moisture/density correlation.
- **2.)** All soils, whether from roadway or borrow, may require manipulation to obtain proper moisture content prior to compaction. Direct payment shall not be permitted for rehandling, hauling, stockpiling, and/or manipulating soils.
- 3.) Excavation of surface ditches and channel changes adjacent to embankment areas shall be performed prior to the placement of the adjacent embankments. The material excavated for the channel changes and surface ditches is suitable for embankment construction if dried to proper moisture content in accordance with Section 206 of the current Standard Specifications for Road and Bridge Construction.
- **4.)** The Contractor is responsible for conducting any operations necessary to excavate the cut areas to the required typical section. These operations shall be incidental to Roadway Excavation or Embankment-in-Place and no additional compensation shall be made for this work.
- 5.) Some of the soil horizons and slopes on the project are subject to erosion. Necessary procedures in accordance with Sections 212 and 213 of the current Standard Specifications for Road and Bridge Construction shall be followed on construction.

- **6.)** Removal of existing structures and other obstructions shall be completed in accordance with Section 203 of the current Standard Specifications for Road and Bridge Construction.
- 7.) Clearing and grubbing of roadway areas shall be completed in accordance with the requirements of Section 202 of the current Standard Specifications for Road and Bridge Construction before embankment placement.
- **8.**) Borrow material, if required for subgrade, shall meet the minimum CBR value of 5.
- **9.)** Perforated pipe for subgrade drainage shall be placed in vertical sags and the upgrade end of bridges in accordance with KY Standard Drawing RDP-005 at the following approximate locations and/or where designated by the Engineer.

Mainline

Station 252+03

Station 258+72

Station 277+55

Station 283+44

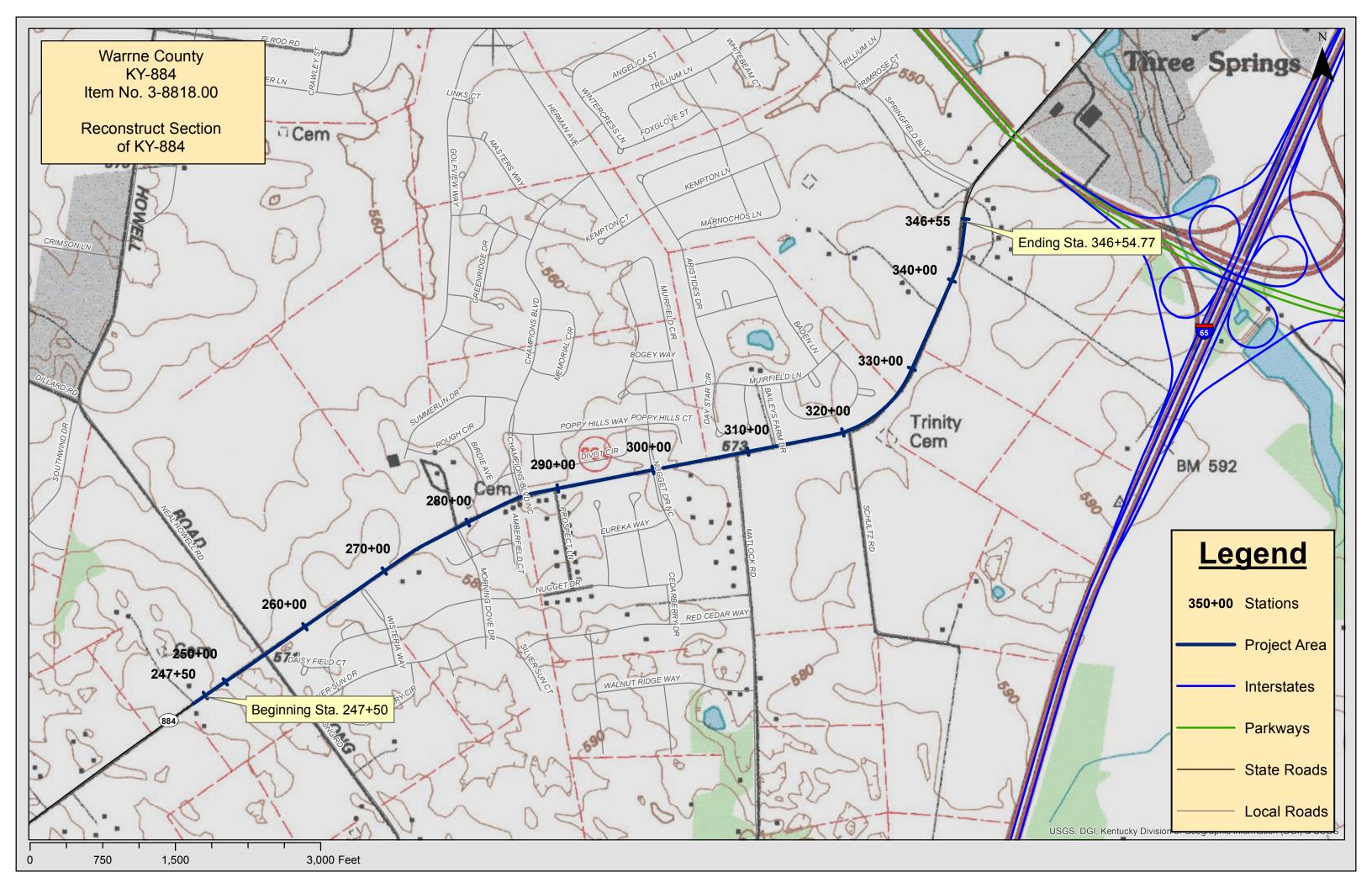
Station 305+95

Station 312+13

Station 327+30

Station 333+79

- 10.) The existing subgrade may be wet and soft in areas where the roadway template is in a shallow cut or fill, or where existing pavement is being removed. Therefore, a minimum 2-foot working platform may be required in these areas consisting of Kentucky Coarse Aggregate No. 2's, 3's or 23's in accordance with Section 805 of the current Standard Specifications. The working platform shall be wrapped with Geotextile Fabric in accordance with Sections 214 & 843 of the current Standard Specifications. Type IV Fabric shall be used for this application contrary to the standard specifications. The working platform shall extend under the curb and gutter. Where curb and gutter are not used, the working platform shall daylight horizontally to the edge of embankment in fills and to the ditchline in cuts to ensure positive drainage. The actual locations and thickness shall be determined by the Engineer during construction and may depend on seasonal fluctuations in the water table.
- 11.) Where curb and gutter is used, sections of 4-inch perforated drain pipe (approximately 4 feet long) shall be placed transversely in the bottom of the granular material to provide drainage into the drop inlets. Longitudinal edge drains or other preferred methods may be used, in lieu of the transversely place perforated pipe, to drain the rock layer, as directed by the Engineer.
- 12.) In order to provide a working platform for embankment construction, Kentucky Coarse Aggregate No. 2's, 3's or 23's in accordance with the current edition of Section 805 of the Standard Specifications for Road and Bridge Construction shall be placed over all soft and/or saturated areas that may be detected during construction, as directed by the Engineer. The required thickness is estimated to be 2 foot, but the actual locations and thickness shall be


determined by the Engineer during construction and may depend on seasonal fluctuations in the water table. This material shall be wrapped with Geotextile Fabric in accordance with Sections 214 and 843 of the Standard Specifications for Road and Bridge Construction, current edition. Type IV Fabric shall be used for this application contrary to the standard specifications.

- 13.) In areas where pavement is not to be overlaid, existing bituminous concrete located at a distance less than three feet below the proposed subgrade elevation within the limits of new roadway embankments, shall be removed entirely. This shall be performed in compliance with Section 206 of the Standard Specifications for Road and Bridge Construction.
- 14.) As directed by the Engineer, existing bituminous concrete located at a distance greater than three feet below the proposed subgrade elevation within the limits of new roadway embankments, shall be scarified or broken until all cleavage planes are destroyed, or the pavement shall be removed entirely as conditions demand. This shall be performed in compliance with Section 206 of the Standard Specifications for Road and Bridge Construction.
- **15.**) If sinkholes are encountered during construction, please contact the Department's Geotechnical Branch for mitigation procedures.

DESIGN RECOMMENDATIONS:

- **1.)** The project should be designed for a two foot subgrade with a **CBR Design value of 5**. The average CBR value for the project is 5.6.
- 2.) An average soil shrinkage value of two (2) percent is estimated for this project. This value should be applied to the formula for calculating the Apparent Shrinkage as outlined in the Design Manual.
- cc: Division of Design (Plan Processing Section)
 TEBM for Pavement Design
 Division of Construction
 TEBM for Project Delivery & Preservation (District)
 TEBM for Project Development (District)
 Project Manager (District)

Attachments:

GEOTECHNICAL SYMBOLS

COUNTY OF	ITEM NO.	SHEET NO.

AASHTO Classification of Soils and Soil-Aggregate Mixtures

General Classification		(Granular Materials 5% or less passing 0.075 mm)				Silt-Clay Materials (More than 35% passing 0.075 mm)			
Group Classification	А	-1				A-2		۸ ۸	A F		A-7
or dap dradarired ren	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5 A-7-6
Sieve Analysis, Percent Passing											
2.00 mm (No. 10)	50 max										
0.425 mm (No. 40)	30 max	50 max	51 min								
0.075 mm (No. 200)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
Characteristics of Fraction Passing 0.425 mm (No. 40)											
Liquid Limit				40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min
Plasticity Index	6 1	Max	N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min

ΑI	Activity Index
LI	Liquidity Index
S+C	Silt + Clay (% finer than No.200 Sieve)
	Rockline Soundings
$lackbox{lack}$	Disturbed Sample Boring
\odot	Undisturbed Sample Boring
	Undisturbed Sample Boring & Rock Core
	Rock Core
-()	Slope Inclinometer Installation
·	typical applications:
OW	Observation Well
→	Approximate Footing Elevation
<u></u> (Date)	Water Elevation

Unified Soil Classifications

MAJOR DI	VISIONS	SYN	/BOL	NAME
		GW		Well-graded gravels or gravel-sand mixtures, little or no fines.
	GRAVEL AND GRAVELLY SOILS	GP		Poorly graded gravels or gravel-sand mixtures, little or no fines.
		GM	+ +	Silty gravels, gravel-sand-silt mixtures.
COARSE		GC		Clayey gravels, gravel-sand-clay mixtures.
GRAINED SOILS		SW		Well graded sands or gravelly sands, little or no fines.
	SAND AND SANDY SOILS	SP		Poorly graded sands or gravelly sands, little or no fines.
		SM	+ + +	Silty sands, sand-silt mixtures.
		SC	0	Clayey sands, sand-clay mixtures.
	SILTS	ML		Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.
	AND CLAYS LL IS LESS	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays silty clays, lean clays.
FINE GRAINED SOILS	THAN 50	ML-CL		Silty clay-silty clay with sand and or gravel, sandy silty clay, sandy silty clay with gravel, gravelly silty clay with sand
	SILTS AND CLAYS	МН		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
	LL IS GREATER THAN 50	СН		Inorganic clays of high plasticity, fat clays.

Unified Soil Classifications - Continued

MAJOR D	IVISIONS	SYN	MBOL	NAME
		GP-GC	•••	Poorly graded gravel with clay (or silty clay), poorly graded gravel with clay and sand (or silty clay & sand)
	GRAVEL	GP-GM		Poorly graded gravel with silt, poorly graded gravel with silt and sand
	AND GRAVELLY SOILS	GW-GC		Well graded gravel with clay (or silty clay), well graded gravel with clay and sand (or silty clay and sand)
		GW-GM		Well graded gravel with silt, well graded gravel with silt and sand
COARSE GRAINED SOILS		GC-GM		Silty clayey gravel, silty clayey gravel with sand
30123	SAND AND SANDY SOILS	SW-SC		Well graded sand with clay (or silty clay), well graded sand with clay and gravel (or silty clay & gravel)
		SP-SC		Poorly graded sand with clay (or silty clay), poorly graded sand with clay and gravel (or silty clay and gravel)
		SP-SM		Poorly graded sand with silt, poorly graded sand with silt and gravel
		SC-SM		Silty clayey sand, silty clayey sand with gravel
		SW-SM	1 1 1	Well graded sand with silt, well graded sand with silt and gravel
LINCLAS	SSIFIED	ОН		Organic (High Plasticity)
MAT	ERIAL	OL		Organic (Low Plasticity)

DEC.	Coro Popovo		
REC	Core Recove		ion (Total Ctropo)
$\frac{\emptyset}{\overline{\alpha}}$	_		ion (Total Stress)
$\overline{\emptyset}$			ion (Effective Stress)
c (psf)	Cohesion (To		
で(psf) * (pof)	Cohesion (Ef		ress)
さ (pcf) RDZ	Total Unit W		
OB	Rock Disinte Overburden		orie
IB	Intermediate		
R	Refusal		
NR	Refusal Not	Fncounter	ad
IVIV	Nerdsdi Nor	LITCOULLE	ed
			TALUS,
LIMESTONE		*	MINE WASTE,
			FILL MATERIAL, Boulders, & etc.
			DUULDENS, & EIC.
SANDSTONE			COAL
DURABLE SHA (SDI≥ 95)	LE		DOLOMITE
(3DI <u>2</u> 93)		/ /	DOLONITIE
NONDURABLE S	HALE		LIMESTONE
(SDI < 95)			(ARGILLACEOUS)
		• 0 0	
GRANULAR EMBANKMENT			SLOPE PROTECTION
LIVIDAINNIVIEINI			
STRUCTURE			

GEOTECHNICAL SYMBOL SHEET

VS (psf) Field Vane Shear Strength

Thin-walled Tube Sample

Penetration Resistance

Qu (psf) Unconfined Compressive Strength

Moisture Content

SDI(JS)

GRANULAR

BACKFILL

Standard Penetration Test Sample

UU (psf) Unconsolidated Undrained Triaxial Strength

Rock Quality Designation (Kentucky Method)

Rock Quality Designation (Standard Method)

Slake Durability Index (Jar Slake Test)

GEOTECHNICAL NOTES

1.) In accordance with Section 206 of the current Standard Specifications, the moisture content of embankment material shall not vary from the optimum moisture content as determined by the current version of KM 64-511 by more than +2 percent or less than -2 percent. This moisture content requirement shall have equal weight with the density requirement when determining the acceptability of embankment construction. Refer to the Family of Curves for moisture/density correlation.

2.) All soils, whether from roadway or borrow, may require manipulation to obtain proper moisture content prior to compaction. Direct payment shall not be permitted for rehandling, hauling, stockpiling, and/or manipulating soils.

3.) Excavation of surface ditches and channel changes adjacent to embankment areas shall be performed prior to the placement of the adjacent embankments. The material excavated for the channel changes and surface ditches is suitable for embankment construction if dried to proper moisture content in accordance with Section 206 of the current Standard Specifications for Road and Bridge Construction.

4.) The Contractor is responsible for conducting any operations necessary to excavate the cut areas to the required typical section. These operations shall be incidental to Roadway Excavation or Embankment-in-Place and no additional compensation shall be made for this work.

5.) Some of the soil horizons and slopes on the project are subject to erosion. Necessary procedures in accordance with Sections 212 and 213 of the current Standard Specifications for Road and Bridge Construction shall be followed on construction.

6.) Removal of existing structures and other obstructions shall be completed in accordance with Section 203 of the current Standard Specifications for Road and Bridge Construction.

7.) Clearing and grubbing of roadway areas shall be completed in accordance with the requirements of Section 202 of the current Standard Specifications for Road and Bridge Construction before embankment placement.

8.) Borrow material, if required for subgrade, shall meet the minimum CBR value of 5.

9.) Perforated pipe for subgrade drainage shall be placed in vertical sags and the upgrade end of bridges in accordance with KY Standard Drawing RDP-005 at the following approximate locations and/or where designated by the Engineer.

Mainline
Station 252+03
Station 258+72
Station 277+55
Station 283+44
Station 305+95
Station 312+13
Station 327+30
Station 333+79

10.) The existing subgrade may be wet and soft in areas where the roadway template is in a shallow cut or fill, or where existing pavement is being removed. Therefore, a minimum 2-foot working platform may be required in these areas consisting of Kentucky Coarse Aggregate No. 2's, 3's or 23's in accordance with Section 805 of the current Standard Specifications. The working platform shall be wrapped with Geotextile Fabric in accordance with Sections 214 & 843 of the current Standard Specifications. Type IV Fabric shall be used for this application contrary to the standard specifications. The working platform shall extend under the curb and gutter. Where curb and gutter are not used, the working platform shall daylight horizontally to the edge of embankment in fills and to the ditchline in cuts to ensure positive drainage. The actual locations and thickness shall be determined by the Engineer during construction and may depend on seasonal fluctuations in the water table.

11.) Where curb and gutter is used, sections of 4-inch perforated drain pipe (approximately 4 feet long) shall be placed transversely in the bottom of the granular material to provide drainage into the drop inlets. Longitudinal edge drains or other preferred methods may be used, in lieu of the transversely place perforated pipe, to drain the rock layer, as directed by the Engineer.

12.) In order to provide a working platform for embankment construction, Kentucky Coarse Aggregate No. 2's, 3's or 23's in accordance with the current edition of Section 805 of the Standard Specifications for Road and Bridge Construction shall be placed over all soft and/or saturated areas that may be detected during construction, as directed by the Engineer. The required thickness is estimated to be 2 foot, but the actual locations and thickness shall be determined by the Engineer during construction and may depend on seasonal fluctuations in the water table. This material shall be wrapped with Geotextile Fabric in accordance with Sections 214 and 843 of the Standard Specifications for Road and Bridge Construction, current edition. Type IV Fabric shall be used for this application contrary to the standard specifications.

13.) In areas where pavement is not to be overlaid, existing bituminous concrete located at a distance less than three feet below the proposed subgrade elevation within the limits of new roadway embankments, shall be removed entirely. This shall be performed in compliance with Section 206 of the Standard Specifications for Road and Bridge Construction.

14.) As directed by the Engineer, existing bituminous concrete located at a distance greater than three feet below the proposed subgrade elevation within the limits of new roadway embankments, shall be scarified or broken until all cleavage planes are destroyed, or the pavement shall be removed entirely as conditions demand. This shall be performed in compliance with Section 206 of the Standard Specifications for Road and Bridge Construction.

15.) If sinkholes are encountered during construction, please contact the Department's Geotechnical Branch for mitigation procedures.

DESIGNED BY: ______

Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS COUNTY OF

WARREN

JECT =========

GEOTECHNICAL NOTES

E NAME;

USER:

43 E-SHEET NAME

MicroS+ation v8.11,7,443 | F-S

									СО	DUNTY OF ITEM NO.	SHEET NO.
										7ARREN 3-8852.0	0
		REFER TO GEOTECHNICAL NOTE 9 FOR	STATION 277+55								
			REFER TO	GEOTECHNICAL	NOTE 9 FOR STATION 283+44						
		00 %								1+65.00	
	590	277+40.0 \$\sqrt{574.58}\$ 1 279+55.						297+00.00	42 301+00.00 20.0' R†.	303, φ0. 0	590
	276+00.00 20.0' Lt. 580 573.4	279+50.00 × Id × 21.0′ R+. 573.3	36	3 7	38	39 291+00.00	40 294+00.00 20.0′R+.	22.0′ L†. 575.6	578.0	577.2	580
	-0.69%		282+00.00 20.0'Lt. 567.0	285+00.00 20.0'Rt. 566.5	288+00.00 20.0′Rt. 567.3	20.0′ L†. 567.9	570.6	1.09% 		13	25
, ME	570 (12) / - 24 NR	(12) / - 25 NR Q	22 (1	\	0.32% 	15) / - 27	0 8 15 / - 30	(13) / 27 NR	NR.	NR 2	570
FILE NA	560	282 15. C	(12)	NR	NR	NR	(PI 294+(560
		Id>	Φ				>1				
	SAMPLE NO. STATION OFFSET	12 279+50 21.0' Rt.	13 15 301+00 291+00 20.0' Rt. 20.0' Lt.								
PLOTTED:	OF TOTAL SAND (-	0.3-5.0 (- 3" + N0.10) N0 10 + N0.200)	0.5-5.0 0.5-5.0 0 0 8 4								
USER:	SAMPLE SILT (- CLAY (-	0.075 mm + 0.002 mm) 55 0.002 mm) 40 44	52 53 40 43 50 39 19 21								
	PLASTIC LIMIT PLASTICITY INDEX ACTIVITY INDEX SPECIFIC GRAVITY	22 22 0.55 2.53	19 21 31 18 0.78 0.42 2.53 2.53								
ET NAME;	AASHTO CLASSIFICATION UNIFIED CLASSIFICATION CALIFORNIA BEARING RATIO	A-7-6(23) CL	A-7-6(30) A-6(18) CH CL 6 -						SCALE: 1"	" = 10'HORIZONTAL " = 100' VERTICAL	
H S -	MAXIMUM DRY DENSITY (pcf OPTIMUM MOISTURE (%) % +4.75mm MATERIAL IN	23	97 - 22 - 0 0								
V8.11.7.443									299+00 300+00 301+00	302+00 303+00	304+00
Station v8.11.	274+00 275+00 276+00 277+	+00 278+00 279+00 280+00 281	+00 282+00 283+00 284+00	285+00 28	6+00 287+00 288+00 289+00 290	+00 291+00 292+00	293+00 294+00	295+00 296+00 297+00 298+00		L PROFILE	
Mior										KY 884 +00 +o 304+0	0

											COUNTY OF WARREN	3-8852.00
_												
									REFE	R TO GEOTECHNICAL NOTE	9 FOR STATION 327+3	0
		REFER TO GEOTECHNICA	AL NOTE 9 FOR STATION 333+79		NICAL NOTE 9 FOR STATION 312	+13				REFER TO GEO	TECHNICAL NOTE 9 FOR	STATION 305+95
			3+50.00 575.15	00				323+60.00 v 578.43	7+20.00		31+00.00	
	590 580	44 306+00.00 30.0' Rt. 571.9	# 15 000	SE	47 316+00.00 20.0'Rt. 573.5	20.	48 20. 00.00 57 0'L+.	00.00 d u o' Rt.	50 326+00.00 20.0'L+. 575.1	51 329+00.00 20.0'L+. 574.2	VPI 3	52 333+00.00 35.0'R+. 574.5 58
: NAME:	09 09 05 000 05 00	0.30% 	16) Z - 24 NR	569.2 	0.30% 	I 320+00.00 lev 575.64	$\frac{\sqrt{87}}{\sqrt{24}} = \frac{0.187}{14}$	7 - 25 30 NR	14)	17 <u>w%</u> 26		$\frac{17}{17}$ 17
FIL	VPI 3C											
		SAMPLE NO. STATION OFFSET	15 291+00 20.0' L+.	14 16 17 323+00 313+00 333+0 20.0' Rt. 20.0' Rt. 35.0' R	0							
ER: TE PLOTTED:		DEPTH COMPOSITION OF TOTAL SAMPLE CRAVEL (- 3" + NO. 10) SAND (- NO 10 + NO. 20) SILT (- 0.075 mm +	0.5-5.0 0 00) 0.002 mm) 53	0.5-6.0 0.9-5.0 0.5-5. 0 0 0 4 5 4 45 49 57	O							
USE		CLAY (- 0.002 mm) LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX ACTIVITY INDEX	43 39 21 18 0.42	51 46 40 50 50 43 24 23 22 26 27 21 0.51 0.58 0.53								
E-SHEET NAME:		SPECIFIC GRAVITY AASHTO CLASSIFICATION UNIFIED CLASSIFICATION CALIFORNIA BEARING RATIO MAXIMUM DRY DENSITY (pcf) OPTIMUM MOISTURE (%)	2.53	2.53	(2)						SCALE: 1" = 10' H 1" = 100'	ORIZONTAL VERTICAL
n v8.11.7.443		% +4.75mm MATERIAL IN CBR & MOISTU		0 0 0						329+00 330+	00 331+00 332+00	333+00 334+00
MicroS+a+io	304+00 305	+00 306+00 307+00 308	3+00 309+00 310+00 311-	+00 312+00 313+00 314-	+00 315+00 316+00 317+	-00 318+00 319+00 320	D+00 321+00 322+00 323	3+00 324+00 325	+00 326+00 327+00	328+00	SOIL PRO KY 88 STA. 304+00 †	4

								COUNTY OF ITE	M NO. SHEET NO
					.05.00 83.55				
	590		336-	53 -00.00 0(1 + 580	4	55 343+00.00			590
	580		5	580 77.4 0.93% 18		20.0′ L†. 576.5	56 346+00.00		580
" L	570		VPI 334+30.00 Elev 577.26	NR N	<u>1</u> 27 R	18	25- Y S S S S S S S S S S S S S S S S S S		570
FILE NAM	560		VPI EI6				(18) NR HOLDER		560
°C		SAMPLE NO. STATION OFFSET DEPTH	17 18 333+00 343+00 35.0'R+. 20.0'L+. 0.5-5.0 0.9-5.0						
USER: DATE PLOTTEC		COMPOSITION OF TOTAL SAMPLE CLAY (- 0.002 mm) LIQUID LIMIT	0 0 4 4 57 46 40 50 43 50						
LJ.		PLASTIC LIMIT PLASTICITY INDEX ACTIVITY INDEX SPECIFIC GRAVITY	22 23 21 27 0.53 0.54 2.53 2.58						
E-SHEET NAM		AASHTO CLASSIFICATION UNIFIED CLASSIFICATION CALIFORNIA BEARING RATIO MAXIMUM DRY DENSITY (pcf) OPTIMUM MOISTURE (%)	A-7-6(22) A-7-6(29) CL CH - 5 - 96 - 24					SCALE: 1" = 10' HORIZON 1" = 100' VERTI	NTAL ICAL
V8.11, 7, 443		% +4.75mm MATERIAL IN CBR & MOISTURE-DENSITY TESTS							
MicroStation			334+00 335+00 33	6+00 337+00 338+00 339	+00 340+00 341+00 342	+00 343+00 344+00 345	+00 346+00	SOIL PROFILE KY 884 STA. 334+00 to 34	6+00

COORDINATE DATA SUBMISSION FORM KYTC DIVISION OF STRUCTURAL DESIGN -- GEOTECHNICAL BRANCH

County	Warren	Date	1/4/2017
Road Number	KY 884		
Survey Crew / Consultant	Rick Adams	Notes:	
Contact Person	Rick Adams		
Item #	03-8852.00	Holes #24-56 (03-	8852.00)
Mars #	8963101D		
Project #			
Elevation Datum = NAVD8	88 or ASSUMED		

HOLE	LATITUDE	LONGITUDE	HOLE	STATION	OFFSET	ELEVATION (ft)
NUMBER	(Decimal Degrees)	(Decimal Degrees)	NUMBER			
24	00.00000	00.400007	24	040.00	4011	504.4
24	36.898362	-86.468287	24	248+00	48' L	581.4
25	36.898486	-86.467563	25	250+00	35' R	575.79
26	36.898935	-86.4667	26	253+00	45' R	567.85
27	36.899636	-86.466062	27	256+00	55' L	566.64
28	36.90004	-86.46516	28	259+00	22' L	570.75
29	36.900512	-86.46432	29	262+00	20' L	574.63
30	36.90099	-86.463484	30	265+00	20' L	583.02
31	36.901341	-86.462956	31	267+00	35' L	587.37
32	36.901785	-86.46209	32	270+00	20' L	579.63
33	36.902164	-86.461168	33	273+00	23' R	576.98
34	36.902676	-86.460356	34	276+00	20' L	573.37
35	36.90302	-86.45923	35	279+50	21' R	573.3
36	36.903437	-86.458536	36	282+00	20' L	567.01
37	36.903714	-86.457563	37	285+00	20' R	566.52
38	36.903961	-86.456603	38	288+00	20' R	567.26
39	36.904231	-86.455624	39	291+00	20' L	567.94
40	36.904286	-86.454592	40	294+00	20' R	570.57
41	36.904562	-86.453614	41	297+00	22' L	575.62
42	36.904666	-86.452245	42	301+00	20' R	578.02
43	36.904882	-86.451601	43	303+00	20' L	577.18
44	36.90491	-86.450562	44	306+00	30' R	571.93
45	36.905105	-86.44939	45	309+50	28' R	572.72
46	36.905316	-86.448222	46	313+00	20' R	569.19
47	36.905479	-86.447216	47	316+00	20' R	573.49
48	36.905824	-86.445917	48	320+00	20' L	573.04
49	36.906082	-86.444936	49	323+00	20' R	577.47
50	36.9067	-86.444248	50	326+00	20' L	575.11
51	36.907366	-86.443681	51	329+00	20' L	574.21
52	36.908305	-86.44295	52	333+00	35' R	574.54
53	36.909119	-86.442706	53	336+00	20' L	577.41
54	36.909827	-86.442164	54	339+00	20' R	580.72
55	36.910892	-86.441839	55	343+00	20' L	576.46
56	36.911693	-86.441575	56	346+00	20' R	571.4